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This is an exploratory research study to check if artificial intelligence (AI) based image marker tool can aid 
leprosy screening to detect leprosy cases early in field situation and reduce the financial and personnel 
burden. We aimed to collect clinical leprosy skin lesion images and develop an AI model to identify and 
differentiate them. A total of 368 clinically diagnosed leprosy and 28 non-leprosy skin lesions were collected 
by an expert leprologist from 151 eligible patients using a multimodal imaging protocol. A Siamese-based 
Few Shot Learning (FSL) model was trained as it is a meta learning approach on an extremely small data 
set with fewer disease classes (disease conditions as categories). The number of class labels were increased 
by fine-grained grouping of skin lesions based on skin morphology (Nine leprosy subgroups) and further 
divided into train-set and test-set. An AI model was successfully developed, and the results indicated an 
accuracy of 91.25% and 73.12% on train-set and test-set for two-way one-shot task, respectively. The best 
sensitivity-specificity for the test-set were 72.39%-73.66% (two-way one-shot task). This early research data 
indicates that the development of AI based leprosy screening application is feasible using the skin lesion 
image as marker. The FSL method was successfully used in this training the small data set.  However, this is 
a small sample size study, and more leprosy cases need to be enrolled along with an equal number of non-
leprosy cases while improving model architecture to reduce overfit or bias problem. Moreover, as of now this 
tool cannot be used for neural leprosy (having no skin lesion) as well as lepromatous leprosy having diffuse 
infiltration. This tool will need further development and validation on pictures taken by different categories of 
common health care workers using available mobile phones.
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Introduction
Despite the preventive measures to control the 
transmission of leprosy, 140,594 new cases were 
reported globally with a detection rate of 17.83 

per million population during 2021. In the same 
year, >9000 new cases in children aged ≤15 years 
were reported across the world (WHO Global 
leprosy update, 2021). India contributed to 58% 
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of global leprosy burden and the prevalence 
rates of pediatric leprosy ranged from 4% to 
34% across the country (Narang & Kumar 2019, 
NLEP 2021). In India, from a total of ~135,485 
new cases of leprosy, 8.7% were among children. 
These numbers reveal that a sizeable proportion 
of the newly detected cases occur in children. 
Among children, the disease tends to occur with 
the highest frequency in 5–14 years of age group 
and up to 6% cases are reported in children <5 
years of age (Narang & Kumar 2019, Barreto et al 
2014). The optimal way to prevent transmission 
of the disease and reduce disabilities is through 
early detection of leprosy followed by initiation 
of multidrug therapy (MDT) (Franco-Paredes & 
Rodriguez-Morales 2016).
According to World Health Organization (WHO), 
the diagnosis of leprosy for a patient not 
receiving MDT is validated by the presence of 
any one of the three cardinal signs: 1) definite 
loss of sensation in a pale (hypopigmented or 
reddish) skin patch, 2) thickened or enlarged 
peripheral nerve, with loss of sensation and/or 
weakness of the muscles supplied by that nerve, 
and 3) presence of acid-fast bacilli in a slit-skin 
smear (WHO 2012, Britton & Lockwood 2004). 
Diagnosis of leprosy using the slit-skin smear test 
requires technical expertise in taking the smear, 
fixation, staining, and interpretation of the result 
(WHO 2012, Britton & Lockwood 2004, Desikan 
et al 2006). Additionally, slit-skin smears are 
positive in multibacillary (MB) leprosy, but are 
not effective in identifying paucibacillary (PB) and 
subclinical forms of leprosy (Gautam & Jaiswal 
2019). Similarly, other diagnostic methods, 
such as enzyme-linked immunoassay (ELISA) 
and lateral flow assay, show low sensitivity for 
PB leprosy, which is often difficult to diagnose 
clinically compared to MB leprosy (Da Silva 
et al 2010, WHO 2017). Although polymerase 
chain reaction (PCR)-based assays using tissue 

specimens show higher sensitivity and specificity 
than ELISA and lateral flow assays, they require 
standardization and are difficult to perform in 
most primary health care settings located in 
remote endemic regions (Martinez et al 2011). 
In addition, there are no commercially available 
PCR tests for leprosy diagnostics (WHO 2017).  
Community-based active case detection and 
prompt treatment, is considered an effective 
strategy to eradicate leprosy (Thangaraju et al 
2018); however, the active case detection in the 
national programs are often impacted by limited 
resources and other diseases taking priority over 
leprosy at a given time.
Compared to an expert dermatologist, it is 
difficult for a public health worker deployed 
on a leprosy screening program to identify the 
early signs of leprosy and confirm its complex 
presentation. Low case detection in decentralized 
and integrated leprosy control services is 
attributed to the lack of specialized skills, 
resource scarcity, and the variable presentation 
of leprosy disease (Kumar & Dogra 2009). In 
addition, existing leprosy screening guidelines 
result in a significant percentage of false-positive 
individuals undergoing unnecessary treatment 
due to overdiagnosis (Hofstraat & van Brakel 
2016). A follow-up study evaluating earlier 
detection of leprosy among asymptomatic 
contacts demonstrated that relatively few 
people with positive tests go on to develop 
clinical leprosy, with an overall positive predictive 
value (PPV) of only 4% (Penna et al 2016). Hence, 
there is a strong unmet need to find better ways 
for leprosy screening in resource-constrained 
settings.
One potential solution to address this unmet 
need is developing an artificial intelligence (AI) 
based leprosy screening tool. Although artificial 
AI techniques have demonstrated promising 
results on their potential role to assist physicians, 
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radiologists, and pathologists in better clinical 
decision-making (Jiang et al 2017, Hosny et al 
2018, Serag et al 2019, De Souza et al 2021), there 
have been few studies in the field of leprosy. 
Therefore, this study was conducted to collect 
clinical leprosy skin lesion images and develop 
an AI model to identify and differentiate leprosy 
skin lesions. Here we also discuss methodologies 
such as multimodal imaging protocol to collect 
skin lesion images from leprosy and non-leprosy 
participants with focus on the low data training 
approach using Siamese based Few Shot Learning 
(FSL). FSL is a technique in machine learning 
where few samples from each labelled category/
class are exposed to model during training to 
measure either similarity or contrast between 
different labelled classes. 

Materials and Methods
Image collection study 
Study participants
In this image collection study, leprosy skin images 
were captured through a non-interventional 
clinical study, implemented in collaboration 
with the Sivananda Rehabilitation Home (SRH), 
Hyderabad, India. 
The patients were enrolled from different 
districts around Hyderabad in the state of 
Telangana, through leprosy camps organized by 
SRH network clinics. These leprosy camps were 
run in Panipura, Gadwal, Vikarabad, Karimnagar, 
Pitlam, and Nalgonda. Interested participants 
were provided with a study-specific participant 
information and written informed consent 
form. In this study we planned to enroll 500 
patients with a confirmed leprosy diagnosis and 
with skin presentation, and another 500 patients 
with leprosy-like skin conditions. However, due 
to the global pandemic the study was stopped 
leading to limited skin image dataset. Hence, the 
study team had to develop a novel approach to 
utilize the limited available image data to develop 

an algorithm. In this study a total of 396 lesions 
were collected (368 leprosy and 28 non-leprosy) 
from 151 dermatology patients. 
Patients of all ages and genders with diverse types 
of leprosy such as the tuberculoid, indeterminate 
(borderline, borderline tuberculoid, borderline 
lepromatous) and lepromatous leprosy were 
included in the study after obtaining written 
informed consent. For children aged <18 years, 
consent from the parent or legal guardian as 
well as the child was obtained. The patients 
who were treated for leprosy for more than 3 
months with anti-leprosy drugs were excluded 
to ensure the images used for algorithm building 
are representative of active leprosy lesions 
without transformation and healing by drug 
therapy. The investigator applied no additional 
exclusions to ensure that the study population 
was representative of all eligible patients.
Ethical considerations
The study was initiated after obtaining approval 
from the Ramdev Rao Hospital’s Institutional 
Ethics Committee (SRH is an organization under 
the jurisdiction of Ramdev Rao Hospital) and 
was conducted following the principles of the 
Declaration of Helsinki and the International 
Council for Harmonization of Technical Require-
ments for Pharmaceuticals for Human Use-Good 
Clinical Practice (ICH-GCP) guidelines.
Image collection protocol
Participants who met the eligibility criteria of the 
study were included by the expert leprologist 
(principal investigator). In majority of cases, 
leprosy is identified in public health screening 
in the later stages of the disease (borderline 
and lepromatous leprosy) due to lack of disease 
awareness. Hence, it was ascertained that 
the inclusion criteria should reflect the actual 
scenarios of leprosy public health screening. 
The peripheral nerves were palpated for all the 
patients and the information is captured in the 
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clinical report form (CRF) as well. However, this 
information is not used for the AI algorithm 
building. The investigator did a thorough clinical 
examination through inspection and palpation of 
lesions and captured the lesion morphology and 
palpation characteristics on a CRF along with the 
clinical history. The diagnosis of leprosy was made 
based on WHO criteria (WHO Expert Committee 
on leprosy: 8th Report 2012) and clinical spectral 
presentation of advanced leprosy, while the 
investigator selected and marked each lesion 
to be imaged on the CRF, with anatomical and 
dermatomal identifiers. The investigator also 
recorded the patient’s sociodemographic data 
on the CRF, along with age and sex; no other 
personally identifiable data was captured. After 
the investigator had marked the eligible lesions 
to be captured, a professional photographer 
took the images of each lesion in different modes 
based on the CRF lesion markings.

Clinical and lesion meta-data
The investigator recorded the clinical history, 
including disease onset and duration, symptoms 
of loss of sensation, pruritus, pain, and signs of 
disease, on the CRF. In addition, the investigator 
identified the potential lesions for image 
acquisition and marked the location on the 
human dermatomal outline in the CRF form 
(Fig.1). The investigator also recorded visual 
inspection and palpation characteristics at each 
lesion level (Table 1) as morphological meta data 
in the CRF form.
Image capturing and imaging modes
A professional photographer captured images of 
the leprosy skin lesions under ambient light. For 
cases where the ambient light was insufficient, a 
5700K LED light source was used, which mimicked 
ambient light. Each lesion was captured in four 
different modes using three imaging devices. The 

Fig. 1 : Body map for location of lesions for image capture
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modes were 1) a high-resolution image captured 
using either Canon EOS7D or EOS 5D with an 18-
135 mm STM lens; 2) a pair of high-resolution 
images captured using either Canon EOS7D 
or EOS 5D with a 100 mm Tamoran lens with a 
polarizing filter at two mutually perpendicular 
directions for each image; and 3) a mobile phone 
image at the highest resolution using either a 

Samsung S10 or iPhone X. The resolutions of 
SLR camera images were 5472*3648 pixels and 
4900*6800 pixels and the image file formats 
were “RAW” and “JPEG. The images captured 
with Samsung mobile were in JPEG format at 
3024*4032 pixels and with iPhone, the images 
were in HIEC format at 4032*3024 pixels. Based 
on either size or other characteristics, few lesions 

Table 1 : List of metadata variables (clinical and lesion level)

Clinical level meta data
Image file name
Age
Sex □ Male, □ Female, □ Others
Employment status □ Employed, □ Unemployed, □ Housewife/husband
Nature or type of employment □ Agriculture, □ Daily wage, □ Others:__
Nutritional status □ Undernourished, □ Normal, □ Obese
Level of undernutrition □ Mild, □ Moderate, □ Severe
Family history of leprosy □ Siblings, □Parents, □ Others:___, □ None
Onset of disease (First lesion 
appearance)

□ Onset: ___, □ Location:___

Duration of present symptoms
Degree of skin tanning □ None, □ Mild, □ Moderate, □ Severe
Total number of lesions □ <2, □ 2–10, □ >10
Lesion distribution □ Asymmetric, □ Symmetric
On leprosy medication □ Yes, □ No
Duration of leprosy medication
Diagnosis or leprosy □ Tuberculoid, □ Borderline, □ Lepromatous
Diagnosis or others
Lesion level meta data
Anatomical location
Dermatome
Pigmentation □ Hypopigmented, □ Normal pigmented, □ Hyperpigmented
Primary type □ Macule, □ Patch, □ Plaque, □ Papule, □ Nodular
Secondary type □ Erythema, □ Scaling, □ Lichenification, □ Excoriation, □ Ulcer
Lesion morphology □ No demarcation, □ Demarcation, □ Elevated, □ Loss of sweat 

glands, □ Loss of hair follicles
Sensory examination □ Hypesthesia, □ Anesthesia, □ Paresthesia
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were captured at different fields of vision (FOV) 
in any one of the modes independent of other 
modes, adding an extra sample of the same 
lesion in that mode. In total, all 396 lesions were 
captured in four modes each and few lesions 
with extra samples, constituting 1931 images. 
Data storage, labeling and meta-data creation
All the images captured were transferred from 
camera memory cards and phones to a computer 
and these images were identified using a naming 
convention as described in the study protocol 
to ensure the images are anonymized. Clinical 
history and lesion meta-data for all the patients 
were created in a comma-separated file (.csv), 
under headers described in Table 1, by a scientific 
research assistant who manually transcribed the 
CRF forms for this study. The renamed images, 

along with meta data in the .csv file of each of 
the patients, were saved on a phone memory 
card, a hard drive, and then transferred and 
saved to secure Cloud storage in all the available 
file formats.
Data and AI modelling
Data imbalance mitigation through image 
clustering to subgroups
The skin images collected in this study (few 
examples cited in Fig. 2) are from nine disease 
categories; 368 were leprosy lesions and 28 
were non-leprosy lesions from the eight leprosy-
like (leprosy simulants) conditions. 368 leprosy 
lesions include lesions with no visible pigmental 
change but only sensory loss, nodular lesions, 
infiltrative leprosy lesions and hyper-pigmented 
lesions other than hypopigmented, anesthetic 

Fig 2 :  Variations in the leprosy lesions: Morphology and clinical presentation

Source: The images are from the current study. 1.1 Patch, Hypopigmented, xerotic; 1.2 Patch, hypop-
igmented and healing; 1.3 Nodular lesion; 1.4 Patch, erythema, central healing; 1.5 Macule, hypopig-
mented, skin appendage loss; 1.6 Patch, hypopigmented, scaly; 1.7 Patch, hypopigmented; 1.8 Macule, 
red; 1.9 Patch, xerosis, normal pigmentation; 1.10 Patch, hyperpigmentation, Ichthyosis; 1.11 Patch, 
hyperpigmentation, Ichthyosis; 1.12 Papule, hypopigmentation, central healing
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and hypoesthetic lesions. Few lesion categories 
with less than two lesions were excluded from 
clustering and from the AI model development. 
Since these data were extremely skewed towards 
leprosy and have minimal data from non-leprosy 
(leprosy simulant) conditions, this posed an 
intractable and ill-defined problem for AI 
training and testing. To overcome this challenge, 
we sub grouped each disease label into fine-
grained categories based on lesion morphology 
and treated each sub grouped category as 
independent classes during training and testing 
(Fig. 3). Leprosy subgroup classes were labelled 
by adding 0 to 8 class labels to leprosy (example: 
leprosy_0, Leprosy_4). Train-set included 
leprosy 0–2, 4, 6, 8, allergic dermatitis, tinea 
cruris, vitiligo while, test-set had leprosy 3, 5, 
7, birth mark, exfoliate dermatitis, non-leprosy, 
psoriasis subgroups. Subgrouping allowed a 
greater number of fine-grained classes and 

reduced skewness with long-tailed distribution, 
as shown in Fig. 3, which is an ideal problem 
that can be solved through few-shot-based 
meta-learning approaches. Leprosy is presented 
differently in terms of lesion morphology within 
each pathological type, such as tuberculoid, 
borderline, and lepromatous (WHO Leprosy 
factsheet 2021) (Fig. 3). Diagnosing leprosy 
requires the skill to identify each of these diverse 
presentations of the disease and translating that 
to an AI problem requires a similar performance 
from the AI model to identify each of these 
diverse presentations, as shown in Fig. 4. 
The primary lesion type characteristics such 
as macule and plaques, pigmentation features 
such as hypo, hyper, normochromic, and 
other colors; along with secondary lesion 
characteristics including erythema, scaling, 
ecchymosis, healing, and scarring were used 
for subgrouping the 396 lesions. All these 

Fig. 3 : Lesion distribution after clustering following large tail pattern
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categorical features were converted to one-shot 
representations in the Python environment. A 
hierarchical agglomerative clustering algorithm 

was applied to all leprosy lesions using Ward’s 
distance metric. At a different ward distance, we 
observed different number of cluster groups in 

Fig. 4 :  Illustration of AI study-based model architecture for leprosy identification

Fig. 5 : Hierarchical clustering of leprosy skin lesions (lesion morphology without skin appendages)
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dendrogram (Fig. 5) and by choosing 9 cluster 
centroids, there was a better homogeneity in 
lesion morphology in each cluster. The remaining 
eight non-leprosy conditions have uniform lesion 
features and hence each one has only one fine-
grained cluster. After excluding “burn patch,” the 
renamed 16 categories were used for training 
and testing the final model.
AI model
We applied a few-shot learning-based approach 
using the Siamese network on this long-tailed 
data. The Siamese network encoder used in 
the study has four convolutional blocks and a 
flattened layer followed by a fully connected 
layer of 4096 dimensions. Each convolutional 
block has one Conv2D layer, batch normalization 
layer, rectified linear activation function (ReLU) 
layer, and a 2X2 MaxPooling2D layer with 64 
filters in each block and 3*3 kernel sizes in 
each block. Encoder output from left and right 
images are fed to a lambda L2 norm layer and a 
final sigmoid layer. The model is trained on both 

binary cross-entropy loss and contrastive loss, 
and the results of contrastive loss-based training 
will be presented in this article.
Contrastive loss = yd2 + (1-y) max (margin − d,0)2

Experiments
The data were split into training data and test 
data by forming a disjoint set of train-set labels 
and test-set labels. Unlike the ideal data split 
for FSL where the train-set has data-rich classes 
and the test-set has data-starved classes, a few 
handpicked classes for testing from data-rich 
classes (leprosy subgroups) were integrated into 
the test-set, and a few tail classes were moved to 
the train-set, which in this case were all leprosy 
simulant classes (Table 2).
One of the classes was labeled as non-leprosy 
as the precise diagnosis requires further 
investigation, although leprosy was clearly 
excluded. Since the data were extremely small, 
both the train-set and test-set were used during 

Table 3 : Accuracy results for train and test set in different models

Models Two-way one-shot task Three-way one-shot task
Train-set Test-set Train-set Test-set

Siamese networks 91.25% 73.13% 89.38% 73.75%
Baseline 1
(Nearest neighbor)

40.63% 26.56% 25.63% 13.75%

Baseline 2
(Inception V3-based encoder)

37.19%  17.19% 25.31% 20.31%

Table 2 : Leprosy subgroups included in training and test data classes

Classes Leprosy subgroups
Train-set classes Leprosy 0, Leprosy 1, Leprosy 2, Leprosy 4, Leprosy 6, Leprosy 8, Allergic 

dermatitis, Tinea cruris, Vitiligo
Test-set classes Leprosy 3, Leprosy 5, Leprosy 7, Birth mark, Exfoliate dermatitis, Non-leprosy, 

Psoriasis
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validation runs. For Siamese-based FSL, training 
takes place on a batch of similar and dissimilar 
labeled pairs and testing happens in the n-way 
k-shot task. Here n is the number of classes and k 
is the number of examples per class.
Hyperparameters
The results presented in this paper were trained 
using ADAM optimizer at learning rate = 0.00005 
for 40000 iterations in total. Both the training set 
and the testing set were validated for every 256 
iterations with 160 two-way one-shot learning 
tasks. A batch size of 16 was used by staking two 
mini batches of eight at each iteration because 
of the limited availability of classes for training. 
Different batch sizes and optimizers with 
different hyperparameters were used however, 
the discussion is restricted to the results of the 
above experiment.
Baseline comparison model
Two models were used for baseline comparison 
at two different few-shot learning tasks. The first 
baseline is a nearest neighbor estimation based 
on L2-norm on images, and the second baseline 
is a nearest neighbor estimation based on L2-
norm on pretrained inception V3 model-based 
embeddings.

Results
The AI model gave an accuracy of 89.38%–
91.25% on training set and 73.0% on test-set on 
two different random few-shot tasks. Each few-
shot experiment had 320 random episodic few-
shot tasks. The model had better performance 

compared with both baselines and inception 
V3-based image embeddings with similar 
predictability to simple l2-norm on images 
(Table 3).
The results clearly demonstrated the advantage 
of metric-based learning over baselines. In 
addition, AI models have relatively lower loss of 
accuracy even at higher-way one-shot tasks. 
Since four non-leprosy classes and three leprosy 
classes were included in the test-set, we chose 
to explore the model’s ability to differentiate 
leprosy from non-leprosy. To perform this task, a 
sensitivity and specificity metric was developed 
with a one versus all approach to compute true 
positives and true negatives. The sensitivity 
and specificity (se-sp) results for the test-set 
were 72.39%-73.66% (two-way one-shot task) 
and 69.33%-77.65% (three-way one-shot task), 
respectively (Table 4). Although not presented in 
the article, corresponding values for the train-set 
were between 87% to 92% for both two-way and 
three-way learning tasks. 

Discussion
Contribution of the study to leprosy screening
Leprosy prognosis can be significantly improved 
with early detection. Early diagnosis and 
treatment are instrumental not only in the 
prevention of disabilities and deformities, but 
also reduce the physical, psychosocial, and 
economic burden of the disease. A potential 
approach to achieve this goal could be by using 
evolving digital technologies; to develop a tool 

Table 4 : Sensitivity and specificity results for test set in different models

Models Two-way one-shot task Three-way one-shot task
Sensitivity Specificity Sensitivity Specificity

Siamese model 72.39% 73.66% 69.33% 77.65%
Baseline 2
(Inception V3-encoder)

16.42% 17.74% 12.00% 15.29%
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that can help detect leprosy earlier compared 
to the current diagnostic methods which require 
the patient to visit a health care facility or 
undergo assessment by a trained health care 
worker (visual examination, a sensitivity test on 
the patch, or a smear test by a trained laboratory 
technician). The ideal tool should support skilled 
health care workers by being easy to adopt, 
without adding to their burden in terms of effort 
required and compromising predictive power in 
work resource-constrained settings. 
This study utilized AI for the objective of leprosy 
screening from two directions, one from the 
data side and the other from the modeling and 
experimental side. The skin image collection for 
the study is designed to simulate real-world noise 
in data. In countries like India, AI tools for leprosy 
screening will be primarily used by field health 
care workers and due to the circumstances in 
which they perform, the imaging are not bound 
within a controlled environment, hence it is 
always better to train an AI model on data that 
simulates real-world scenario of noisy data. This 
AI imaging model is planned to be integrated 
into mobile handset which can be used by public 
health care workers (end users). The care flow 
pathway for an AI based screening tool is that 
once algorithm identifies high risk cases, clinical 
diagnosis is performed followed by MDT. In a 
recent study, an AI-based cross-platform app 
was developed for leprosy screening with the 
sensitivity and specificity of 93.97% and 87.09%, 
respectively to increase accessibility for health 
professionals, especially in remote diagnostic 
centers in Brazil (De Souza et al 2021).
Another aspect of data-related innovation is in 
the data subgrouping into fine-grained classes 
using lesion morphology and using them in 
the experiment as independent classes. This is 
fundamentally a novel approach to training as 
the skin lesion images in each cluster now have 

uniform morphological features, simulating an 
actual clinical decision-making system, which 
is primarily based on the visual semantics of 
lesions. This is clinically relevant because many 
skin diseases have diverse lesion morphological 
presentation due to the differences in pathological 
pathways, as in leprosy. This is comparatively a 
more robust approach as compared to that of 
prototypical clustering on derma skin lesions by 
Prabhu and colleagues (Prabhu et al 2019) due to 
its data centricity. 
In this study, clinical data-based modelling 
was not utilized, primarily because certain 
associations, such as sensory loss (ascertained by 
the investigator as per the protocol), were present 
in almost all early leprosy lesions, which will then 
be an obvious predictor. A model built on clinical 
data has a high chance of low predictability 
due to subjective variability of clinical variables 
elicited by health care professionals. It is more 
relevant for leprosy as the clinical data would be 
elicited and entered in the AI model by health 
care workers. In this regard, pure image-based 
AI can eliminate skills-based dependencies and 
gaps.
Another contribution of this study is applying 
a Siamese network based FSL approach. This is 
a good approach for developing an AI tool for 
leprosy due to the limitations on data availability, 
both for leprosy and leprosy-simulant conditions 
commonly considered as a differential diagnosis 
for leprosy. Unlike the approach by Lui and 
colleagues where multiple skin lesion images 
are required (Liu et al 2020); this approach helps 
to train on low data while achieving satisfactory 
performance. A major advantage with this 
approach is that this model can differentiate 
an unseen class or disease from other classes/
conditions. This is especially useful because it is 
a common challenge in real screening scenarios. 
Other benefits include its ability to be trained 
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easily in new classification tasks in other skin 
disease domains with small datasets and that it 
can work in scenarios where there are several 
classes, which is true for leprosy due to greater 
number of conditions for differential diagnosis. 
In these conditions, traditional supervisory 
methods may not be efficient due to their 
dependency on large data for each class.

The findings of this study must be seen 
considering few limitations. Although the 
Siamese network approach is successful in FSL 
tasks such as face recognition and character 
recognition, its applicability in skin imaging 
requires model architecture innovation because 
of the FOV variations in skin imaging. A meta-
learning-based approach using other related 
datasets can significantly improve model 
accuracy when combined with encoder design 
and hyperparameter tuning. Improving subgroup 
clustering by reducing noise in annotation of 
lesion morphology features will refine model 
learning. Another major limitation in our 
study is the lack of sufficient leprosy-simulant 
classes, which, if addressed, could significantly 
improve the model’s accuracy. Though clinical 
data like sensory loss was not utilized for this 
model, adding it to image prediction scores 
generated from this model might help improve 
PPV in public health screening. This needs to 
be studied in a separate validation analysis. 
Another limitation is that the model was trained 
data that is labelled based on clinical diagnosis 
which might contribute to noisy data due to less 
sensitivity and specificity of clinical diagnostic 
criterion. To mitigate this problem and improve 
model learning, the model needs fine-tuning 
and validation on image data which is labelled 
based on both clinical diagnosis and laboratory 
confirmation. We also acknowledge that we have 
used WHO criterion to annotate the images and 

train the algorithm which may lead to potential 
bias in algorithm in case the data is from patients 
who might have incorrectly been diagnosed with 
leprosy. However, it must also be noted that the 
present study is exploratory research to check 
the feasibility of AI in screening and diagnosis. 

In conclusion, the current study suggests that 
an AI based tool for extracting image-based 
biomarker for aiding leprosy screening is 
feasible. Using a small dataset of leprosy and 
leprosy-simulant skin images, the proposed FSL 
modeling approach was able to give an accuracy 
of 91.25% on trainset and 73.12 % on test-set. 
Our approach, further need supervised training 
on classification task with large data of leprosy 
and non-leprosy (leprosy simulants) which then 
will be validated in a clinical study to measure its 
effectiveness as a screening aid or tool compared 
with existing standards. The users will be able 
to use this tool after regulatory approvals post 
clinical validation.

The other limitations of the study are that 
sufficient sample size of non-leprosy skin lesions 
could not be included due to the Covid pandemic. 
In addition, this tool may not be applicable to the 
pure neuritic cases as well as lepromatous leprosy 
cases where there is no skin lesion involvement. 
Further development and validation of this tool 
needs to consider pictures taken by different 
categories of common health workers using 
available mobile phones for realizing its actual 
usefulness in respective health care systems.
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